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Abstract
This paper considers an asynchronous grant-free non-orthogonal multiple access (NOMA) systems which can be applied in

massive machine-type communications (mMTCs) and underwater IoT acoustic communication scenarios due to its high

spectral efficiency and low power consumption characteristics. In particular, the system’s asynchronous reception of user

signals can effectively reduce the additional overhead caused by synchronous reception. We investigate the joint activity

and channel estimation in the asynchronous case, where an asynchronous frame structure is considered, and a pilot

sequence designed by chaotic sequence is used to reduce the pilot storage space. The joint estimations are formulated as

single measurement vector (SMV) and multiple measurement vector (MMV) problems for single-antenna and multiple-

antenna systems. Different from the existing estimation algorithms, where prior information is considered for estimation,

an adaptive alternating direction method of multiplier (ADMM)is proposed for the SMV problem and a two-stage ADMM

is proposed for the MMV problem. In particular, an index set is first estimated in each iteration of our proposed adaptive

ADMM, and a linear ADMM is performed based on the index set. The first stage of our proposed two-stage ADMM is to

estimate the delay and the activity, and then the channel state information is estimated. Further, we analyze the complexity

of the two algorithms and their sensitivity to the initial values of chaotic sequences. Finally, simulation results reflecting the

detection performance of the algorithms are given. Based on the simulation results, the proposed two algorithms are

computationally efficient, providing superior signal recovery accuracy and user activity detection performance. More

importantly, the signal delay has a relatively small impact on the proposed algorithm.

Keywords Adaptive alternating direction method of multiplier (ADMM) � Asynchronous grant-free NOMA �
Chaos sequence � Underwater IoT

1 Introduction

With the dramatic growth of IoT devices and wireless

network data, future communication technology has higher

requirements for spectrum efficiency, energy consumption,

response delay and connection in massive machine-type

communications (mMTCs) [1, 2]. As the research focus of

B5G wireless communication technology, there are always

particular technical challenges to realize low-latency reli-

able communication in mMTC with limited bandwidth
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resources. Especially, underwater communication based on

acoustic propagation has stricter requirements for energy

efficiency [3, 4]. Generally, to prolong the life of the

device, only a few of the devices or users in mMTC are

active simultaneously. In this sporadic communication

mode, the base station (BS) will find active users according

to the data received at different moments. Therefore,

detecting active user devices and accurately decoding their

data with low latency and low power consumption will be

challenging in various communication scenarios, especially

for underwater acoustic network communication.

Grant-free access [5, 6] and NOMA [7, 8] are promising

solutions to the problems of low-latency communication

and massive connection, respectively. As there is no

requirement for any verification or authorization, the delay

of the signal can be reduced in communication. In NOMA,

different users can reuse channel resources to provide more

user connections and achieve higher spectrum efficiency.

Therefore, NOMA technology is desirable attractive for

underwater communication where resources are minimal

[9–11]. In [9], NOMA communication is used for multi-

user underwater communication, while the MMW-NOMA

technique based on a node-pairing algorithm is applied to

an underwater acoustic network [10]. Furthermore, [11] is

based on NOMA with relay assistance to optimize the

power of the devices and maximize the secrecy perfor-

mance of the underwater communication network.

In [12], the sparsity of the underwater acoustic channel

is described. Therefore, the channel estimation and signal

detection process in underwater communication can be

viewed as a sparse signal recovery problem and solved

using a signal estimation algorithm. In the massive IoT, the

research on channel estimation, user and data detection has

attracted much attention [13–21]. For example, in [13], a

two-stage scheme is given, in which the pilot is first sent to

detection, and then the data is estimated. In [16], a method

based on the EP algorithm is proposed, which is used for

the estimation of the signal. AMP algorithm is widely used

in signal estimation, and various improved AMP algo-

rithms abound. Initially, the AMP algorithm was used in

SMV systems [17]. Then, the improved AMP was applied

to MMV systems [18]. In [19] and [20], the author com-

bined the Vector-AMP algorithm [21] with the MMSE

denoiser to propose an MMV-AMP method. Besides, [22]

adopted a parallel AMP method with improved computa-

tional efficiency. However, the above research is based on

the premise that different users are fully synchronized. This

synchronization scheme does not make sense in practice,

since the timing of the signals sent by various users to the

base station can vary over time. Therefore, research based

on asynchronous scenarios is essential.

Recently, many works have discussed the asynchronous

grant-free access system [23–30]. In the asynchronous

NOMA scenario in [23], the signal frame is divided into

segments, and each segment is processed separately by the

AMP algorithm to reduce the complexity. In [26], aiming

at the pilot pollution caused by asynchrony, an LMMSE

estimator for asynchrony estimation is designed. For the

problem of inter-symbol interference caused by asyn-

chronous transmission, [27] designs a pilot with a two-part

structure based on the grant-free NOMA system to deal

with it; Whereas in [28], a Bayesian receiver composed of

two modules is designed for processing, including signal

decomposition and time delay estimation. The research

[29] considered a blind MIMO detection problem and

proposed a Turbo-BiG-AMP algorithm to solve it. In

addition, a learnable AMP network is proposed in [30],

where parameter learning of the network is performed by

model driving.

It should be noted that in the signal processing algorithm

mentioned above, most of the pilots used are randomly

generated Gaussian matrices, which requires additional

storage space for pilots. A chaotic system [31] is a non-

linear system that is uniquely determined by the initial seed

and susceptible to the initial value. Therefore, taking the

sequence generated by a chaotic map as the pilot matrix

only needs to store and transmit the initial seed, saving the

space overhead for storing the pilot.

In this paper, based on the scenario of asynchronous

grant-free NOMA, we conduct the activity and channel

joint estimation in SMV and MMV problems, respectively.

We will propose a new estimation scheme based on

ADMM, which will be applied to SMV and MMV prob-

lems, respectively. Different from the joint estimation

algorithms in [32] and [33], it deals with asynchronous

issues here. The asynchronous delay is reflected in the pilot

design. Here, the Chebyshev chaotic sequence generates

the pilot, and gaps of different lengths are added to the pilot

to simulate the signal delay. Then, in the SVM scenario, we

solve it using a low-complexity linear ADMM algorithm,

as discussed in previous work [34]. In addition, with the

need for greater accuracy, an adaptive ADMM algorithm

framework is proposed based on the index set update. This

idea of index set update was first put forward in [35], and

later it was applied to many different scenes [36, 37]. A

two-stage ADMM approach is proposed for its sparse

hierarchical structure to solve the MMV problem. A sum-

mary of our contribution is as follows:

• To reduce the storage space of pilot sequences, a

chaotic sequence is used to generate a pilot matrix. An

adaptive ADMM is proposed for the SMV problem. In

particular, an outer loop of index set updating is added

outside the adaptive ADMM. The outer circle of the

algorithm is used to update the index set, and the inner
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loop is used to estimate the signal under the corre-

sponding index set.

• A sparse hierarchical structure of a joint l1-norm and

l2;1-norm regular equation acting on the MMV problem.

A two-stage ADMM is proposed to solve this equation.

In the first stage, whether each user is active or not and

their signal delay is estimated based on block sparsity.

In the second stage, the channel information of each

user is accurately estimated.

• Finally, for the proposed method, the main reasons that

affect the complexity are analyzed, and the influence of

signal delay and SNRs is revealed. Based on the

simulation results, the proposed two algorithms are

computationally efficient while providing superior

signal recovery accuracy and activity detection perfor-

mance. Moreover, the proposed algorithm has strong

stability for the delay.

2 System model

Consider an asynchronous frame grant-free uplink NOMA

system for the underwater IoT, where the base station (BS)

serves N potential active single-antenna users. In order to

save energy consumption and extend the life of underwater

IoT devices, the potential user is activated sporadically

with a small probability and transmits its data to the BS.

Therefore, when the signal arrives at the BS, the BS will

process it asynchronously for different users. It is assumed

that the signals of active users are synchronous at the

symbol duration level with some unknown symbol delays.

The frame structure of the asynchronous grant-free NOMA

system is shown in Fig. 1. In particular, the maximal

symbol delay D is not large than the guard time Tg, i.e.,

D� Tg. In this paper, we will set Tg ¼ D, and the duration

of pilot observation is Lþ D, where the pilot sent by the

user is a sequence of length L.

Unlike the pilot sequences generated by random

sequences, which require considerable storage space, we

consider a pilot sequence introduced by Chebyshev chaotic

map [31], in which only the initial seeds and main

parameters must be stored. Thus the pilot storage space is

significantly reduced. Especially, the lth ðl ¼ 1; 2. . .; LÞ
symbol of the pilot sequence for user n (n ¼ 1; 2; . . .;N) is
defined as

an;l ¼ cosðs � arccosðan;l�1ÞÞ; ð1Þ

where an;0 2 ½�1; 1� is the initial seed for user n. Then the

unique normalized LðL � NÞ-length sequence an ¼
an;1; an;2; . . .an;L
� �T2 RL�1 for the nth user is obtained by

normalizing L outputs of the Chebyshev map defined in (1)

with seed an;0. It is essential to point out that each user only

needs to protect its own initial seed from enhancing the

security of the pilot sequence. Besides, the real sequence

defined in (1) can be easily extended to the complex

sequence by producing the imaginary part with another

seed.

For a complete synchronization case, i.e., D ¼ 0, the

single measurement vector (SMV) signal is received by the

BS with a single-antenna as indicated below

~y ¼ a1; a2; . . .; aN½ � x1h1;x2h2; . . .;xNhNð ÞTþ ~w

¼ AXhþ ~w

,A~eþ ~w;

ð2Þ

where A ¼ a1; a2; . . .; aN½ � 2 RL�N is the pilot matrix, X ¼
diagðxÞ with x ¼ ðx1;x2; . . .;xNÞ is an indicator matrix

for all users to be active or not. In particular, xn ¼ 1

denotes the active state of user n, and xn ¼ 0 means the

inactive state. Besides, h ¼ ðh1; h2; . . .; hNÞT denotes the

channel coefficient vector associated with all users.

~w�N cð0; r2~wILÞ is an additive white Gaussian noise

(AWGN) vector.

For the asynchronous case, i.e., D	 1, the pilot

sequence an of user n can be expanded to an ~L� ðtn þ 1Þ
matrix An ¼ ½~an1; ~an2; . . .; ~anðtnþ1Þ� representing all possible

measurements within delay tnðtn �DÞ, where ~anj ¼
~anj;1; . . .;

�
~anj;tnþ1; . . .; ~anj; ~LÞ

T 2 R
~L�1 is the jth possible

measurement of pilot sequence, and
~L ¼ Lþ tn; j ¼ 1; 2. . .; tn þ 1. In particular, ~an is obtained

by inserting tn zeros before an and D� tn zeros after an,

i.e., ~an ¼ 0Ttn ; a
T
n ; 0

T
D�tn

� �T

. Moreover, Xn ¼ diagðxnÞ 2

RðDþ1Þ�ðDþ1Þ with xn ¼ ðxn1;xn2; . . .;xnðDþ1ÞÞT denotes

the equivalent activity, where only one element of xn is

one, and other elements are zeros. Then the SMV can be

formulated as

y ¼ ~A ~X~hþ w

, ~Aeþ w;
ð3Þ

in which matrix ~A ¼ ½A1;A2; . . .;AN � 2 C
~L�NðDþ1Þ collects

the pilot of all users, ~X ¼ diagðX1;X2; . . .;XNÞ 2
CNðDþ1Þ�NðDþ1Þ, ~h ¼ ðð1Dþ1h1ÞH ; . . .; ð1Dþ1hNÞHÞH 2
CNðDþ1Þ, and w 2 C

~L�1 is the AWGN vector.

Furthermore, the multiple measurement vectors

(MMVs) problem for the BS with M antennas is

Y ¼ ~A ~XHþW, ~AEþW; ð4Þ

where H ¼ ½~h1; ~h2; . . .; ~hM � 2 CNðDþ1Þ�M denotes the

channel matrix, and E ¼ ~XH 2 CNðDþ1Þ�M is the effective

channel matrix, and W 2 C
~L�M is an AWGN matrix.

Wireless Networks

123



Note that the SMV and MMV problems formulated in

(3) and (4) are both sparse recovery problems due to the

sporadic activity of users. Different from the existing

works, where some prior information or Gaussian mea-

surement matrix is required, the aim of this paper is to

chaotic sparse measurement problems without any prior

information.

3 Proposed adaptive ADMM algorithm
for SMV problem

We propose an adaptive ADMM algorithm for the activity

and channel joint estimation of asynchronous grant-free

uplink NOMA in this section. In particular, the joint esti-

mation is first formulated as an SMV problem, which is a

sparse recovery problem. Unlike the ADMM algorithm,

where all of the elements of the sparse vector are estimated

in each iteration. The proposed adaptive ADMM algorithm

selects part of elements with small amplitudes to perform

low-complexity ADMM estimation in each iteration of the

outer loop. To this end, a sparse recovery framework based

on the index set update is introduced for the outer loop and

a linear ADMM is derived for the inner loop.

The joint estimation for the SMV in (3) is formulated as

min
e2CNðDþ1Þ

kek0 ð5aÞ

s.t. ky� ~Aek22 � �; ð5bÞ

where parameter �[ 0 is determined by Gaussian noise. It

is challenging to handle the problem (5) which is an NP-

hard problem. Consequently, problem (5) is further related

as

min
e2CNðDþ1Þ

kek1 ð6aÞ

s.t. ky� ~Aek22 � �: ð6bÞ

Note that all of the elements in sparse vector e can be

estimated by solving the optimization problem (6). How-

ever, the estimation accuracy is difficult to guarantee

because most elements are zeros. Especially, the perfor-

mance of activity detection will degrade significantly

without perfect prior information or an appropriate

threshold. To this end, the kth estimation of e based on the

problem (6)

eðkÞ ¼ argmin
e2CNðDþ1Þ

kek!ðkÞ;1 ð7aÞ

s.t. ky� ~Aek22 � �; ð7bÞ

where the set !ðkÞ is obtained by

!ðkÞ ¼ fi : jeðk�1Þ
i j �-ðk�1Þg ð8Þ

with threshold -ðkÞ ¼ keðkÞk1=bk�1; bk�1 	 1 is parameter,

and kek!ðkÞ;1 ¼
P

i2!ðkÞ jeðkÞi j. Different from (6), problem

(7) is solved according to the set !ðkÞ. It is important to

point out that the set !ðkÞ is the index set of elements with a

smaller amplitude in eðkÞ. The aim of the problem (7) is to

find the solution under constraint (7b) such that the sum of

Fig. 1 The frame structure of

asynchronous grant-free NOMA

system
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the amplitudes of elements over set !ðkÞ is minimal. The

proposed sparse recovery framework based on iterative

index update is summarized (Fig. 2):

• Step 1: The set !ðkÞ is updated in (8).

• Step 2: The sparse signal vector eðkÞ is obtained by

solving problem (7).

• Step 3: The threshold -ðkÞ in set !ðkÞ is updated.

To solve the problem (7) effectively, a linear ADMM

algorithm is proposed. The corresponding unconstrained

optimization problem for the problem (7) is formulated as

min
e2CNðDþ1Þ

1

2
ky� ~Aek22 þ ckek!ðkÞ;1; ð9Þ

where the regularization parameter c	 0. Adding the

variable z simplifies the solution of (9) as

min
e2CNðDþ1Þ

1

2
ky� ~Aek22 þ ckzk!ðkÞ;1 ð10aÞ

s.t. e ¼ z; ð10bÞ

Consequently, we can obtain the augmented Lagrange

function of (10)

Lðe; z; uÞ ¼ 1

2
ky� ~Aek22 þ ckzk!ðkÞ;1 þ

q
2
ke� zþ uk22;

ð11Þ

where the constant parameter q[ 0, and the variable u is

the multiplier of (11), also called a dual variable. Subse-

quently, we can then decompose (11) into several sub-

problems to be solved, with the tth iteration proceeding as

eðtþ1Þ ¼ argmin
e2CNðDþ1Þ

1

2
ky� ~Aek22 þ

q
2
ke� zðtÞ þ uðtÞk22; ð12aÞ

zðtþ1Þ ¼ argmin
z2CNðDþ1Þ

ckzk!ðkÞ;1þ
q
2
kz� eðtþ1Þ�uðtÞk22; ð12bÞ

uðtþ1Þ ¼ uðtÞ þ eðtþ1Þ � zðtþ1Þ; ð12cÞ

Firstly, the (12a) is convex and differentiable to the

variable e. Take the derivative of (12a), and we can get

ð ~Ae� yÞH ~Aþ qðe� zðtÞ þ uðtÞÞH ¼ 0; ð13Þ

After a simple calculation we obtain

eðtþ1Þ ¼ ðqIN þ ~AH ~AÞ�1 ~AHyþ qðzðtÞ � uðtÞÞ
� �

: ð14Þ

In (14), we can see that its primary computational con-

sumption lies in the multiplication and inversion of the

matrix. As we know, an increase in users and the asyn-

chronous signal delay will bring an increase in the size of

matrix ~A, which in turn leads to a dramatic increase in

complexity. Considering the efficiency of solving the

algorithm and avoiding the inverse operation of the matrix,

we can treat (12a) as

eðtþ1Þ ¼ argmin
e2CNðDþ1Þ

1

2
k �Ae� �yk22; ð15Þ

where the matrix �A ¼ ð ~AH ;
ffiffiffi
q

p
INÞH and

�y ¼ ðyH ; ffiffiffi
q

p
zðtÞ � uðtÞ
� �HÞH .

Let f ðeÞ ¼ 1
2
k �Ae� �yk22 denote the objective function of

(15), then perform a Taylor expansion at eðtÞ,

f ðeÞ ¼ f ðeðtÞÞ þ Re½rf ðeðtÞÞðe� eðtÞÞ�

þ 1

2
ðe� eðtÞÞHr2f ðeðtÞÞðe� eðtÞÞ


 f ðeðtÞÞþRe½rf ðeðtÞÞðe� eðtÞÞ�þlðtÞ

2
ke� eðtÞk22;

ð16Þ

where the parameter lðtÞ [ 0 is used for the approximation

of the second-order derivative r2f ðeðtÞÞ, and lðtÞ is

dynamically adjusted with the result of each iteration,

defined as

lðtÞ ¼ k ~AðeðtÞ � zðtÞÞk22
kðeðtÞÞ � zðtÞk22

: ð17Þ

We submit (16) into (15) and can obtain

Fig. 2 Proposed adaptive ADMM framework

Wireless Networks

123



eðtþ1Þ ¼ argmin
e2CNðDþ1Þ

lðtÞ

2

�
2Re

1

lðtÞ
rf ðeðtÞÞðe� eðtÞÞ

� 	
þ ke� eðtÞk22




¼ argmin
e2CNðDþ1Þ

lðtÞ

2
ke� eðtÞ þ 1

lðtÞ
rf ðeðtÞÞk22:

ð18Þ

Accordingly, the tth update of (12a)is

eðtþ1Þ ¼ eðtÞ � 1

lðtÞ
rf ðeðtÞÞ

¼ eðtÞ � 1

lðtÞ
�AHð �AeðtÞ � �yÞ:

ð19Þ

For sub-problem (12b), the elements of solution over index

set !ðkÞ is obtained by

z
ðtþ1Þ
!ðkÞ ¼ argmin

z2CNðDþ1Þ
ckzk!ðkÞ;1 þ

q
2
kz!ðkÞ � e

ðtþ1Þ
!ðkÞ � u

ðtÞ
!ðkÞk22

¼ shrink1 e
ðtþ1Þ
!ðkÞ þ u

ðtþ1Þ
!ðkÞ ;

c
q

� 

;

ð20Þ

The threshold function shrink1 is consistent with the defi-

nition in [38]. The elements of the solution zðkþ1Þ over the

complement of the index set !ðkÞ is

z
ðtþ1Þ
ð!ðkÞÞC ¼ e

ðtþ1Þ
ð!ðkÞÞC þ u

ðtÞ
ð!ðkÞÞC : ð21Þ

The solution zðtþ1Þ of sub-problem (12b) is then obtained

based on (20) and (21).

Therefore, the updates of (17), (19), (20), and (21) are

repeated until the exit condition is satisfied:

keðtþ1Þ � eðtÞk2
keðtþ1Þk2

\g; ð22Þ

where g[ 0 is a constant, which is specified according to

the precision required. Finally, in Algorithm 1 we can see

the overall process of the proposed algorithm.
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4 Proposed two-stage-ADMM for MMV
problem

Different to the SMV problem, the sparse recovery for

MMV problem (4) with multiple-antenna BS is expressed

as

min
vecðEÞ

kvecðEÞk0 ð23aÞ

s.t. kvecðYÞ � ðIM � ~AÞvecðEÞk22 � �; ð23bÞ

where the operation of converting a matrix into a vector is

vecð�Þ.
Similarly, we can relax the problem (23) and deal with it

by joint norm

min
E

1

2
kY� ~AEk2F þ c1kEk1 þ c2kEk2;1; ð24Þ

The regular parameters c1 	 0, c2 	 0. In (24), the matrix E

is row sparse. Thus, the l1-norm is used to constrain the

overall sparsity, while the l2;1-norm is used to constrain the

row sparsity.

Under the joint norm constraint, we can still use the idea

of linear ADMM to solve (24). However, the straightfor-

ward solution has high complexity and low precision.

Therefore, we consider (24) as a two-part process to meet

efficiency and accuracy requirements and propose a two-

stage ADMM algorithm.

In the first stage, considering the effect of signal delay

Tg ¼ D, the related channel information of each user is

changed from one row of matrix E to Tg þ 1 rows. This

way, we can transform the sparse constraint on each row in

l2;1-norm term into the constraint on Tg þ 1 rows. The new

norm term is denoted as
PN

i¼1 kðEÞikF , where ðEÞi 2
CðTgþ1Þ�M is all possible channel information belonging to

the ith user. Of all these possibilities, only one row is the

actual channel coefficient of the user, i.e., only one row is

non-zero. Therefore, the first stage of the algorithm is to

solve a block sparse constraint problem

min
E

1

2
kY� ~AEk2F þ c1

XN

i¼1

kðEÞikF: ð25Þ

Furthermore, the augmented Lagrange function of (25) is

LðE;Z;UÞ ¼ 1

2
kY� ~AEk2F þ c1

XN

i¼1

kðZÞikF

þ q1
2
kE� Zþ Uk2F:

ð26Þ

Based on the classical ADMM and the idea of (12a), the

solution process of (26) is as follows,

(1) Update Eðkþ1Þ as

Eðkþ1Þ ¼ EðkÞ � 1

lðkÞ1

~AH ~Aþ q1IN
� �

EðkÞ
�

� ~AHY� q1 ZðkÞ � UðkÞ
� �

Þ
ð27Þ

(2) Update Zðkþ1Þ as

ðZÞðkþ1Þ
i ¼ shrinkF;1 ðEÞðkþ1Þ

i þ ðUÞðkÞi ;
c1
q1

� 

: ð28Þ

where i ¼ 1; 2; :::;N.

(3) Update Uðkþ1Þ as

Uðkþ1Þ ¼ UðkÞ þ Eðkþ1Þ � Zðkþ1Þ: ð29Þ

Remark 1 By solving (25), we can obtain a block-sparse

solution that defines the index set corresponding to a non-

zero block as ind1, i.e.,

ind1 ¼ fijkðEÞikF 6¼ 0; i ¼ 1; 2; :::;Ng.

Remark 2 For each non-zero block in ind1, only one row is

channel information belonging to an actual active user.

To find the real location of active users, we take the row

with the largest l2-norm in the ith non-zero block ðEÞi as
the estimated active user location and record it as ind2.

Where

ind2 ¼ fjjmaxðkðEÞi;jk2Þ; i ¼ 1; 2; :::;N; j ¼ 1; 2; :::; Tg þ 1g;

j denotes the jth row of ðEÞi.
In the second stage, we use l1-norm constraint to esti-

mate only the channel coefficients on the index set ind2.

min
Eind2

1

2
kY� ~Aind2Eind2k

2
F þ c2kEind2k1: ð30Þ

Similarly, the augmented Lagrange function of formula

(30) is

LðEind2 ;Zind2 ;Uind2Þ ¼
1

2
kY� ~Aind2Eind2k

2
F þ c2kZind2k1

þ q2
2
kEind2 � Zind2 þ Uind2kF :

ð31Þ

Similar to the first stage solution, the process of solving

(31) is

(1) Update E
ðkþ1Þ
ind2

as

E
ðkþ1Þ
ind2

¼E
ðkÞ
ind2

� 1

lðkÞ2

~AH
ind2

~Aind2 þ q2IN
� �

E
ðkÞ
ind2

�

� ~AH
ind2

Y�q2 Z
ðkÞ
ind2

� U
ðkÞ
ind2

� ��
:

ð32Þ

(2) Update Z
ðkþ1Þ
ind2

as
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z
ðkþ1Þ
i ¼ shrink1 e

ðkþ1Þ
i þ u

ðkÞ
i ;

c2
q2

� 

: ð33Þ

where zi is the ith column of matrix Zind2 ,

i ¼ 1; 2; :::;M,.

(3) Update U
ðkþ1Þ
ind2

as

U
ðkþ1Þ
ind2

¼ U
ðkÞ
ind2

þ E
ðkþ1Þ
ind2

� Z
ðkþ1Þ
ind2

: ð34Þ

Similar to (22), the condition for loop exit is

kEðkþ1Þ � EðkÞk2
kEðkþ1Þk2

\g: ð35Þ

The proposed two-stage ADMM algorithm is summarized

in Algorithm 2.

Remark 3 We transformed (24) into a two-stage solution,

with the first stage considering only the estimation of active

users without specific accuracy and the second stage

solving exactly for each user’s channel information. This

improves computational efficiency and estimation

accuracy.

5 Complexity analysis

This section will analyze the steps within the algorithm that

contribute the most to the complexity.

As can be obtained in Algorithm 1, the primary com-

putational consumption in the loop comes from the multi-

plication calculation of Eq. (19). In this step, a total of

KðT0ð3NðTg þ 1Þ þ 2 ~LNðTg þ 1ÞÞÞ multiplication opera-

tions are performed, where K and T0 represent the times of

the outer loop and inner loop, respectively.

Similarly, (27) and (32) are the primary computational

costs of algorithm 2 in two stages, respectively. In the first
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stage, (27) performed K1ð2MNðTg þ 1Þð ~Lþ 1ÞÞ times of

multiplication. In the second stage, (32) was multiplied

K2ð2jind2jMð ~Lþ 1ÞÞ times where K1 and K2 are the

iteration times in each of the two stages.

6 Simulation

We will perform simulation experiments and performance

analysis of the linear ADMM algorithm, the adaptive

ADMM algorithm, and the two-stage ADMM algorithm.

The parameters are set: N ¼ 256, the probability of users

being active p ¼ 0:1, L ¼ 128. In particular, the initial seed

of the chaotic sequence used to generate the pilot for each

user is a random number an;0 2 ½�1; 1�; n ¼ 1; 2; :::;N. In

the asynchronous case, the number of users is extended to

NðTg þ 1Þ and ~L ¼ Lþ Tg.

The performance evaluation of the algorithms for

channel estimation is defined as

NMSE ¼ kĤ�Hk2
kHk2

; ð36Þ

where H ¼ e or H ¼ E. The parameters used to evaluate

the performance for active user detection are the false

alarm rate (PFA) and the missed detection rate (PMD),

defined in [39]. To better describe the PFA and PMD in the

simulation results, the same strategy as in [39] is adopted

here, where the threshold is set for determining whether it

is active. When the estimated value exceeds the threshoud,

it is considered active.

In the SMV problem, the parameters of the relevant

algorithm are set as: b ¼ 5, c ¼ 0:03, g ¼ 0:0001, q ¼ 0:1,

and threshold 2 ½0; 1�. A performance comparison of the

algorithms is given in Figs. 3 and 4. A NMSE comparison

of the linear ADMM, the adaptive ADMM and the AMP is

given in Fig. 3, where the signal delays are set as Tg ¼ 3

and Tg ¼ 5, respectively. We can see that both the linear

ADMM algorithm and the AMP algorithm have a decrease

in estimation accuracy when the signal delay Tg increases.

The linear ADMM algorithm performs better at high SNRs

(SNR	 25 dB), while the AMP algorithm has an advan-

tage at low SNRs. In addition, the adaptive ADMM algo-

rithm is very accurate, achieving a 5 dB performance

improvement at high SNRs. This is attributed to the fact

that the usual linear ADMM is deficient in estimating small

amplitude signals. In contrast, the adaptive ADMM algo-

rithm only estimates small amplitude signals in each inner

loop.

In Fig. 4, the active user detection performance of the

algorithm is given for SNR ¼ 25 dB and different signal

delays Tg. We can observe a significant improvement in

PFA and PMD performance for the adaptive ADMM

algorithm. In particular, the PFA and PMD performance of

the linear ADMM is worse than the AMP at Tg ¼ 1. As Tg
increases, the performance of linear ADMM is gradually

superior to the AMP algorithm. Therefore, it can be con-

cluded that the impact of signal delay Tg on the linear

ADMM is less than that of the AMP.

Furthermore, we consider the MMV problem with a

receiving antenna M ¼ 32, parameters q1 ¼ 1, c1 ¼ 2,

g ¼ 0:0001 q2 ¼ 1, c2 ¼ 0:01, threshold 2 ½0; 10� for

PMD and threshold 2 ½0; 5� for PFA. Figure 5 compares

the estimation accuracy (NMSE) of the two-stage ADMM

and MMV-AMP. The impact of signal delay on the esti-

mation accuracy of the MMV-AMP can be very significant,

with the estimation accuracy at Tg ¼ 3 already worse than

the proposed two-stage ADMM at Tg ¼ 7. In other words,

the proposed two-stage ADMM is superior to the MMV-

AMP in terms of estimation accuracy and robustness to

signal delay Tg. These advantages of the two-stage ADMM

are reflected in the fact that the first stage of the algorithm

is used to detect whether a user is active in the delay Tg.

From (25), although the increase in Tg introduces a dis-

turbance in precision, it has less impact on whether the ðEÞi
is non-zero.

Simulation results of the active user detection perfor-

mance of the two-stage ADMM are shown in Figs. 6, 7,

and 8. Figure 6 gives the effect of the proposed algorithm

on detection performance at Tg ¼ 3 with different SNRs.

From Fig. 6, when the signal delay Tg is fixed, the noise

has no significant impact on the PFA but has a greater

effect on the PMD. In addition, when the SNRs increase to

SNR ¼ 2 dB, the PMD of the algorithm shows a relatively

stable trend.

The PMD and PFA performance of the two-stage

ADMM algorithm at SNR ¼ 5 dB and for different Tg are

0 5 10 15 20 25 30
SNR (dB)

10-2

10-1

100

N
M

SE

Proposed adaptive-ADMM (Tg=3)
Linear-ADMM (Tg=3)
AMP (Tg=3)
Proposed adaptive-ADMM (Tg=5)
Linear-ADMM (Tg=5)
AMP (Tg=5)

Fig. 3 NMSE comparison in the SMV problem
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given in Figs. 7 and 8, respectively. From the simulation

figure, we can see that when the SNRs are constant, the

signal delay Tg has a considerable impact on both the PFA

and PMD performance of the algorithm. As Tg increases,

the PMD gradually decreases while the PFA gradually

improves.

Finally, the NMSE of the proposed algorithm for the

estimated signals using different initial seeds is given in

Table 1. It is assumed that the initial seed used by each user

at the transmitter side to generate the pilot is ai;0, and the

initial seeds used at the receiver side to generate the pilot

are ai;0, ai;0 þ 10�6 and ai;0 þ 10�12ði ¼ 1; 2; :::;NÞ. The
estimated NMSE shows that the proposed two algorithms

have extremely poor estimation performance after slight

changes in the initial seeds. Thus, this demonstrates the

10-5 10-4 10-3 10-2 10-1

PFA

10-1

PM
D Proposed adaptive-ADMM (Tg=1)

Linear-ADMM (Tg=1)
AMP (Tg=1)
Proposed adaptive-ADMM (Tg=3)
Linear-ADMM (Tg=3)
AMP (Tg=3)
Proposed adaptive-ADMM (Tg=5)
Linear-ADMM (Tg=5)
AMP (Tg=5)

Fig. 4 Comparison of the algorithm’s active user detection perfor-

mance at SNR ¼ 25 dB

0 5 10 15 20 25 30
SNR (dB)

10-3

10-2

10-1

N
M

SE

MMV-AMP (Tg=1)
MMV-AMP (Tg=2)
MMV-AMP (Tg=3)
Proposed two-stage ADMM (Tg=3)
Proposed two-stage ADMM (Tg=7)

Fig. 5 NMSE comparison in the MMV problem

10-5 10-4 10-3

PFA

10-3

10-2

10-1

PM
D

Proposed two-stage ADMM (2 dB)
Proposed two-stage ADMM (1 dB)
Proposed two-stage ADMM (0 dB)
Proposed two-stage ADMM (-1 dB)
Proposed two-stage ADMM (-2 dB)

Fig. 6 Comprehensive performance in the MMV problem for Tg ¼ 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Threshold
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10-5

10-4

10-3
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A

Proposed two-stage ADMM (Tg=3)
Proposed two-stage ADMM (Tg=5)
Proposed two-stage ADMM (Tg=7)

Fig. 7 PMD of the proposed algorithm at SNR ¼ 5 dB
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Fig. 8 PFA of the proposed algorithm at SNR ¼ 5 dB
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sensitivity of the estimation performance of the algorithms

to the initial seeds.

7 Conclusion

This paper proposed two algorithms for joint estimation of

activity and channel state information for an asynchronous

grant-free NOMA system, which can be applied to massive

IoT wireless communications. Due to the high spectral

efficiency and low power consumption of the system, it is

well suited for underwater acoustic communication, which

has higher power requirements. In particular, the pilots

generated by chaotic sequences are considered for reducing

the pilot storage space. An adaptive ADMM is proposed

for the SMV problem, and a two-stage ADMM is proposed

for the MMV problem. Simulations show that the proposed

two algorithms are computationally efficient while pro-

viding superior signal recovery accuracy and activity

detection performance. Moreover, the sensitivity of chaotic

sequences to initial values is demonstrated. Finally, the

proposed algorithm has strong stability for the delay.
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