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Abstract—Spatial non-stationarity channel estimation for u-
plink massive MIMO systems can be formulated as a non-
uniform block sparse signal recovery problem, in which the
hierarchical sparsity of the channel matrix is classified as row
sparsity and in-row sparsity. This paper proposes an efficient
threshold-enhanced hierarchical estimation (TEHE) algorithm
without prior information. More precisely, the non-zero rows of
spatial non-stationarity channel matrix are estimated according
to the in-row correlation in the first layer; while the non-zero
elements of the estimated non-zero rows are further refined in
the second layer. Different from the existing two-layer iteration
algorithms, an adaptive threshold is designed to estimate the
non-zero elements replacing the iterative algorithm in the second
layer. In the proposed TEHE algorithm, row-wise sparse adaptive
matching pursuit (SAMP) is used to find the non-zero rows in
the first layer, which has high precision and lower complexity,
compared to the conventional SAMP. To further improve the
efficiency of the row estimation for larger antenna array, an
adaptive threshold-enhanced hierarchical estimation (A-TEHE)
algorithm is proposed. In addition, a sufficient condition and a
halting condition for theoretical guarantee to obtain accurate row
estimation are developed. Finally, the computation complexity
is analyzed and compared. The simulation results demonstrate
that the proposed threshold-enhanced hierarchical spatial non-
stationary channel estimation algorithms achieve better perfor-
mance compared to various state-of-the-art baselines in terms
of support set estimation, channel coefficient estimation, and
computational efficiency. Specifically, the proposed algorithms are
robust to the in-row sparsity.
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compressive sensing, hierarchical estimation, massive MIMO.
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I. INTRODUCTION

W ITH the rapid development of the Internet of Things
(IoT) [2] in the fifth generation (5G) networks [3]–[5],

such as massive machine-type communication, autonomous
driving, future communication networks have higher require-
ments of spectral efficiency, energy efficiency, and trans-
mission/processing delay, etc.. Massive/Extremely-large-scale
multiple-input multiple-output (MIMO) system increases the
antenna scale of the base station (BS) to improve the through-
put and expands the coverage by utilizing spatial freedom.
Meanwhile, a large number of BS antennas bring high array
gain, which can significantly reduce the power consumption
of each user. Besides, a combination of massive MIMO and
intelligent reflecting surfaces [6], distributed MIMO anten-
na array systems [7], and intelligent signal processing of
extremely large-scale antenna array systems [8] can further
optimize the efficiency of massive MIMO systems in 5G.
Consequently, the MIMO system equipped with more BS
intelligent antennas is regarded as a promising technology
towards the sixth generation (6G) communication networks
[9]–[11]. In practical massive MIMO systems, lower pilot
cost and accurate channel information acquisition by the BS
are the keys to implementing simple linear precoding [12]
and approaching the upper bound of system performance.
However, the pilot cost of channel estimation increases with
the increase of the number of transmitting antennas or the
served users, and uplink channel estimation becomes more
challenging.

To reduce the pilot cost and the complexity of massive
MIMO channel estimation, one of the main methods is to
optimize the channel estimation algorithm based on the hidden
sparsity [13]–[15]. For example, the channel matrix can be
sparsely represented in the angular domain or polarization
domain. In particular, the sparse patterns of massive MIMO
channels can be sorted into two types: spatial stationary and
non-stationary characteristics, whose channel impulse respons-
es (CIRs) are shown in the following Fig. 1. For the spatial
stationary channel, as Fig. 1(a) shown, all of the elements in
each row of the channel matrix are either zeros or non-zeros,
i.e., the spatial stationary channel has only all-zero and all-
non-zero rows. However, in the spatial non-stationary channel,
there is a different sparse structure of the BS antennas, and the
sparsity of the whole channel becomes non-uniform, which is
reflected in Fig. 1(b) with rows containing both zero and non-
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(a) CIRs of spatial stationary
channel.

(b) CIRs of spatial non-
stationary channel.

Fig. 1. Illustration of CIRs for spatial stationary and non-stationary channels.

zero elements. It is more challenging to design spatial non-
stationary channel estimation algorithms due to the special
non-uniform block sparse structure. Most recently, the works
on spatial non-stationary channel estimation have attracted
more attention [16]–[18]. In [16], a sparse Bayesian algorithm
based on hierarchical Dirichlet process prior information is
proposed for uplink spatial non-stationary channel estimation.
Further, a three-layer Markov chain is adopted to formulate
the visibility and delay prior information in [19], and a turbo
orthogonal approximate message passing algorithm is adopted
to estimate the uplink channel of MIMO with an extremely
large-scale antenna array. In addition, a pattern-coupled prior is
used to formulate the non-uniform sparse structure of massive
MIMO channels [20], and a generic sparse Bayesian learning
framework is developed. These works make reasonable use
of channel sparse structure for estimation. However, prior
information is required and the complexity limits the antenna
array size.

Recently, compressed sensing (CS) based techniques [21]–
[26] are applied to the massive MIMO channel estimations.
Unlike the Bayesian-type estimation algorithms, which rely on
the prior distribution of the channel, the CS-based techniques
take advantage of the special sparse structure of channels.
For example, an alternative CS-based channel estimator for
millimeter wave hybrid MIMO systems is developed in [27],
in which grid-based orthogonal matching pursuit is proposed.
Moreover, a large aperture array is divided into multiple
subarrays and the channel of last-hop scatterers is modeled
as a spherical wavefront in [28]. Then, the subarray-wise and
the scatterer-wise channel estimation methods are proposed,
respectively. Further, [29] proposes a generalized block orthog-
onal matching pursuit estimation framework by considering
the special block sparse structure of the channel matrix.
However, this characteristic only appears in the stationary
channel. Thus, the block CS-based algorithm is inefficient for
spatial non-stationary channel estimation. In [30], a two-stage
sparse channel estimation scheme based on block matching
pursuit (BMP) is proposed for spatial non-stationary channel
estimation. The estimation accuracy is improved by exploit-
ing the non-uniform block sparse structure of spatial non-
stationary channels, while the complexity is high due to two
iteration stages with BMP.

In this paper, we consider the uplink spatial non-stationary

channel estimation of massive MIMO systems, where the
hierarchical sparse structure is used to model the channel
matrix, i.e., row sparsity, and in-row sparsity. Unlike the
general block sparse recovery problem, we consider an non-
uniform block sparse matrix and model it as a hierarchical
sparse recovery problem. Two threshold-enhanced hierarchi-
cal estimation algorithms comprised of two-layer estimations
are proposed without prior information. Different from the
first layer of the traditional two-stage iteration algorithm,
a block sparse adaptive matching pursuit (SAMP) is used
to estimate the non-zeros rows of the channel matrix in
the first layer, while an adaptive threshold is designed for
refining the elements of the estimated non-zero rows. More
importantly, the proposed threshold for refining the elements
in the non-zero rows can still work well even though the in-row
sparsity is poor. In addition, the performance of the proposed
algorithm, including estimation accuracy, halting condition and
computation complexity are analyzed. The main contributions
of this paper are summarized as follows:

• A threshold enhanced hierarchical estimation (TEHE)
algorithm including two layers is proposed for uplink
spatial non-stationary channel estimation of massive MI-
MO systems. Specifically, a block SAMP algorithm based
on the in-row correlation of the channel matrix is used
to estimate the non-zero rows in the first layer, and
a threshold based on the reconstructed noise level is
designed for element refining in the second layer.

• To further improve the efficiency of the proposed TEHE
algorithm, an adaptive threshold- enhanced hierarchical
estimation (A-TEHE) algorithm is proposed. Higher ef-
ficiency can be obtained by adjusting the step size of
the first layer, and the normalized mean square error
(NMSE) performance can be improved for low signal-
to-noise ratio (SNR) region. In addition, the designed
threshold can be used to find out the support set and
refine the estimated channel effectively. Different from
the existing two-stage iteration algorithms, the proposed
algorithm can be applied to enhance the estimated non-
zero channel coefficient with different sparsity patterns.
Even if it is close to the dense case, i.e., nearly spatial
stationary channel, the estimation performance can still
be guaranteed.

• The theoretical guarantees to achieve the desired accu-
racy in the first layer estimation in the proposed TEHE
algorithm are derived. The developed sufficient conditions
prove that the proposed algorithm can correctly find all
row support sets of the sparse channel matrix. Moreover,
the stopping conditions and the complexity of the pro-
posed algorithms are analyzed and discussed.

Simulation results indicate that the proposed threshold-
enhanced hierarchical spatial non-stationary channel estima-
tion algorithms outperform various state-of-the-art baselines
in terms of support set estimation, channel coefficient estima-
tion and computational efficiency. In addition, the proposed
algorithms do not require any prior information and sparsity
guarantee of the non-zero rows. Specifically, our algorithms
still have excellent performance for the non-zero row density
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channel matrix.
The remainder of this paper is organized as follows. We

introduce the system model in Section II. Then, Section III
presents the proposed threshold-enhanced hierarchical spatial
non-stationary channel estimation. Moreover, the performance
analysis of the proposed algorithms are presented in Section
IV. Finally, the simulations and the conclusions are presented
in Section V and Section VI, respectively.

Notations: x,x,X denote scalar, vector and matrix, respec-
tively. diag(x) is the diagonal matrix with diagonal elements
x. CN (µ, σ2) denotes a complex Gaussian distribution with
mean µ and variance σ2. X⊗Y denotes the Kronecker product
of X and Y. � denotes the XNOR operation. The cardinality
of Ω is defined as |Ω|. ‖·‖0, ‖·‖1, ‖·‖2 and ‖·‖F are l0-norm,
l1-norm, l2-norm and Frobenius-norm, respectively.

II. SYSTEM MODEL

Consider the spatial non-stationary channel estimation of
uplink massive MIMO system, in which K single-antenna
users communicate with one BS equipped with M antennas.
The delay-domain CIRs between the k(k ∈ {1, 2, · · · ,K})-
th user and the m(m ∈ {1, 2, · · · ,M})-th BS antenna can
be expressed as [26] hk,m = (hk,m1, hk,m2, · · · , hk,mL)T ,
where L is the equivalent channel length. Especially, only a
small portion of elements in hk,m are significant, and the
remaining are near-zero or zero elements, i.e., the channel
vector hk,m can be sparsely represented in the delay-domain.
Let p̄k ∈ CN×1 be the transmit signal including data and
pilots of user k in the frequency-domain, which is further
transformed into signal p̃k ∈ CN×1 in the time-domain after
inverse discrete Fourier transform (IDFT) at the transmitter.
Then, the time-domain received signal at the m-th antenna of
the BS is

y̆m = p̃k ~ hk,m + w̃m = T
[

hk,m
0N−L

]
+ w̃m, (1)

where ~ denotes the circular convolution operation, w̃m is
the additive Gaussian white noise (AWGN). Especially, T ∈
CN×N is the Toeplitz matrix (or circulant matrix), which is
determined by the p̃k and defined as

T =


p̃0 p̃N−1 · · · p̃1

p̃1 p̃0 · · · p̃2

...
...

. . .
...

p̃N−1 p̃N−2 · · · p̃0

 . (2)

Because fast Fourier transform can be used to diagonalize
the circulant matrix, i.e.,

T = F−1
N×Ndiag(p̄k)FN×N , (3)

with an N -point discrete Fourier transform (DFT) matrix
FN×N , the frequency-domain signal can be represented as

ȳm = FN×N y̆m = FN×NT
[

hk,m
0N−L

]
+ FN×N w̃m (4)

= diag(p̄k)FN×Lhk,m + w̄m,

where FN×L denotes the selection of the first L columns
of FN×N , w̄m = FN×N w̃m denotes the AWGN in the

frequency-domain. Without loss of generality, we assume that
pilot signals are inserted on Np subcarriers. Let pk ∈ CNp×1

be the pilot part of transmit data p̄k for user k in frequency-
domain. Then, the received pilots in frequency-domain from
user k at the m-th BS antenna for channel estimation is
expressed as

ym = diag(pk)FNp×Lhk,m + wm , Akhk,m + wm, (5)

where pk = (ejθk,1 , ejθk,2 , · · · , ejθk,Np )T ∈ CNp×1 with
{θk,n}

Np

n=1 ∈ [0, 2π] is the pilot sequence of user k, FNp×L ∈
CNp×L is a DFT sub-matrix, Ak = diag(pk)FNp×L ∈
CNp×L, and wm ∼ CN (0, σ2INp

) ∈ CNp×1 is the corre-
sponding AWGN for channel estimation.

At the m-th BS antenna, the received frequency-domain
signals from all users are expressed as

ym =

K∑
k=1

Akhk,m + wm , Sxm + wm, (6)

where S = [A1, · · · ,AK ] ∈ CNp×KL,xm =
[hT1,m,h

T
2,m, · · · ,hTK,m]T ∈ CKL×1.

Further, the received signals at all BS antennas can be
formulated as

Y = SX + W, (7)

where Y = [y1,y2, · · · ,yM ] ∈ CNp×M , X =
[x1,x2, · · · ,xM ] ∈ CKL×M , and W = [w1,w2, · · · ,wM ] ∈
CNp×M . Note that X is a non-uniform block sparse matrix,
i.e., spatial non-stationary channel or the sparse structures of
delay-domain channels for different antennas are not identical
[30], in which most rows have all zero elements, and the
remaining rows have some non-zero elements. Based on
the sparse structure of X, the channel estimation in (7) is
transformed into solving the following l0-norm minimization
problem, i.e.,

min
vec(X)∈CKLM×1

‖vec(X)‖0 (8a)

s.t. ‖vec(Y)− (IM ⊗ S)vec(X)‖22 ≤ %, (8b)

where vec(X) denotes matrix X vectorization, and % ≥ 0 is a
tuning parameter introduced by measurement noise. However,
(8) is an NP-hard problem. The objective function of (8)
can be replaced by other norms to find the sparse solution
approximatively. In particular, the ‖X‖2,0 or ‖X‖2,1 is further
considered when X is a uniform block sparse matrix, i.e., the
spatial stationary channel. The goal of this paper is to design
an efficient algorithm for solving the problem (8) with non-
uniform block sparse matrix X.

III. THRESHOLD-ENHANCED HIERARCHICAL SPATIAL
NON-STATIONARY CHANNEL ESTIMATION

In this section, we propose a threshold-enhanced hierarchi-
cal algorithm to estimate the non-uniform block sparse channel
matrix, in which the non-zero rows are estimated in the first
layer and the elements of the estimated non-zero rows are
further estimated in the second layer. In particular, a row-wise
SAMP algorithm is proposed for estimating the non-uniform
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block sparse channel matrix. To further estimate the positions
of zero elements in non-zero rows, a threshold is designed in
the second layer.

A. Threshold-Enhanced Hierarchical Algorithm

1) Row-Wise Estimation Layer: The estimated non-uniform
block sparse matrix X̂(t) of problem (8) in the t-th iteration
can be expressed as

X̂(t) = [(x̂
(t)
1 )T , (x̂

(t)
2 )T , · · · , (x̂(t)

KL)T ]T , (9)

where x̂
(t)
r , r = 1, 2, · · · ,KL is the r-th row of matrix X̂(t).

Defining Ω
(t)
row(X̂(t)) as the row support set of X̂(t), it is clear

that Ω
(t)
row(X̂(t)) = {r|‖x̂(t)

r ‖22 6= 0, r = 1, 2 · · · ,KL}. Note
that X̂(t) has many zero rows, which can be estimated by
using the SAMP algorithm.

Different from the element-wise SAMP estimation, we
propose a row-wise SAMP algorithm for the first layer es-
timation, in which the in-row correlation of the non-uniform
sparse channel matrix is considered to improve the estimation
accuracy. The purpose of this layer is to find the position of the
non-zero rows in X̂(t) quickly and estimate the corresponding
elements. To this end, a candidate row support set, defined as
Ψ

(t)
row(X̂(t)), is first introduced. The main processing includes

the following two steps:
Step 1: Update the candidate row support set Ψ

(t)
row(X̂(t)). In

order to the row support set Ω
(t)
row(X̂(t)), the sensing matrix

can be expressed as S = [s1, s2, · · · , sKL], where sr is the
r-th column of S. The correlation coefficient between each
column of S and the residual matrix R(t−1) of the (t− 1)-th
iteration is defined as

c(t)r = ‖sHr R(t−1)‖1, r = 1, 2, · · · ,KL, (10)

where R(t−1) = Y − S
Ω

(t−1)
row (X̂(t−1))

X̂
(t−1)

Ω
(t−1)
row

∈ CNp×M is

the residual matrix with R(0) = Y, and S
Ω

(t−1)
row (X̂(t−1))

∈
CNp×|Ω(t−1)

row (X̂(t−1))| is the sub-matrix containing the column-
s selected from S according to the row support set
Ω

(t−1)
row (X̂(t−1)). The larger value of c(t)r means that sr is

more correlated with R(t−1), and the r-th row of X is more
likely to be a non-zero row. Defining the index set as
Π(t) = {r|c(t)r , r = 1, 2, · · · ,KL}, then it can be split into
two subsets, i.e.,

Π(t) = Λ
(t)
I ∪ Λ

(t)
KL−I , (11)

where Λ
(t)
I ∩ Λ

(t)
KL−I = Ø, |Λ(t)

I | = I, |Λ(t)
KL−I | = KL − I ,

and I is the size of preliminary candidate row support set.
In particular, the defined subsets Λ

(t)
I and Λ

(t)
KL−I satisfy the

following condition:

∀j, k, j ∈ Λ
(t)
I , k ∈ Λ

(t)
KL−I , c

(t)
j ≥ c

(t)
k , (12)

i.e., Λ
(t)
I contains the indexes of the I maximum values of

{c(t)r }KLr=1.
The update of candidate row support set:

Ψ(t)
row(X̂(t)) = Ω(t−1)

row (X̂(t−1)) ∪ Λ
(t)
I , (13)

where Ω
(0)
row(X̂(0)) = Ø.

Step 2: Update the row support set Ω
(t)
row(X̂(t)). With the

candidate set Ψ
(t)
row(X̂(t)) updated in step 1, the estimated

channel matrix X̂(t) is

X̂(t) = S†
Ψ

(t)
row(X̂(t))

Y, (14)

where S†
Ψ

(t)
row(X̂(t))

∈ C|Ψ(t)
row(X̂(t))|×Np is the pseudo-inverse

of S
Ψ

(t)
row(X̂(t))

. To quickly find non-zero rows, the `2-norm of

each row of X̂(t) is calculated as

f (t)
r = ‖x̂(t)

r ‖22, r = 1, 2, · · · ,KL. (15)

Note that if r /∈ Ψ
(t)
row(X̂(t)), x̂

(t)
r = 0. Similar to (13), the

Ξ(t) = {r|f (t)
r , r = 1, 2, · · · ,KL} can be expressed as

Ξ(t) = ∆
(t)
I ∪∆

(t)
KL−I , (16)

where ∆
(t)
I ∩∆

(t)
KL−I = Ø, |∆(t)

I | = I, |∆(t)
KL−I | = KL − I ,

and the defined subsets ∆
(t)
I and ∆

(t)
KL−I satisfy

∀j, k, j ∈ ∆
(t)
I , k ∈ ∆

(t)
KL−I , f

(t)
j ≥ f

(t)
k . (17)

Then the row support set is estimated as Ω
(t)
row(X̂(t)) = ∆

(t)
I .

Update the candidate set and the row support set in the first
layer until the residual matrix satisfies the halting condition.

Finally, the non-zero rows can be found, and the channel
matrix is estimated by

X̂1st = S†
Ω

(t)
row(X̂(t))

Y ∈ C|Ω
(t)
row(X̂(t))|×M . (18)

Remark 1. The `2-norm of each row of X̂(t) is calculated in
(15), and the I rows with larger l2-norm are found according
to (16) and (17). We are actually calculating the l2,0-norm
‖X‖22,0, which can improve the efficiency of finding the row
support set of the channel matrix.

Remark 2. The zero elements of X are estimated according
to the complement of row support set Ωrow(X̂1st), i.e., all non-
zero rows are found; while the zero elements in non-zero rows
can not be estimated.

It is important to point out that the non-zero rows are always
found perfectly due to the traversal of all possibilities, and the
values of non-zero rows and zero rows are separated in Ξ(t).
However, the estimation accuracy of the non-uniform sparse
channel matrix in (18) is affected by the sparsity of the non-
zero row. Specifically, it has high estimation accuracy if the
non-zero row of the channel matrix has large sparsity, i.e., a
large number of non-zero elements, especially for the case that
the non-zero row is density, such as the stationary channel. To
estimate the elements of non-zero row without sparsity prior
information, an element-wise estimation for the estimated non-
zero rows is proposed in the second layer.

2) Element-Wise Estimation Layer: Let E , Ωrow(X̂1st),
SE denotes the matrix composed of the corresponding columns
of E in matrix S, and X(E) denotes the matrix composed of the
corresponding rows of E in the matrix X̂1st, then the received
signal in (7) is represented as:

Y = SEX(E) + W. (19)
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Note that the column vectors of SE estimated by row-wise
SAMP in the first layer are linearly independent, i.e., SE is
a column nonsingular matrix. Further, the received signal can
be re-written as

Ỹ = X(E) + W̃, (20)

where S̄E = (SHE SE)−1SHE , Ỹ , S̄Y,W̃ , S̄W. Therefore,
the regularization problem for estimating X(E) in the second
layer of the proposed algorithm is formulated as

X̂(E) = arg min
X(E)∈C|E|×M

1

2
‖Ỹ −X(E)‖2F + ζ‖X(E)‖0,1, (21)

where ζ > 0 is a regular parameter, and ‖X(E)‖0,1 ,∑M
c=1 ‖xE,c‖0 is `0,1-norm encouraging the columns of matrix

X(E) to become sparse, where xE,c is the c-th column of X(E).
Further, (21) is expressed as

{x̂E,c}Mc=1 = arg min
{xE,c}Mc=1

M∑
c=1

(
1

2
‖ỹc − xE,c‖22 + ζ‖xE,c‖0

)
,

(22)

where ỹc is the c-th column of Ỹ. The closed-form of the
solution in problem (22) can be obtained by the following
Theorem.

Theorem 1. The element of non-zero rows in the channel
matrix is given by

x̂E,cn =

{
0, if ζ0 ≥ |ỹcn|2,

ỹcn, if 0 < ζ0 < |ỹcn|2,
(23)

and the threshold ζ0 is expressed as

ζ0 = ‖(SHE SE)−1SHE ‖22
Npσ

2

|E|
κ, (24)

where x̂E,cn and ỹcn represent the n-th element of x̂E,c and
ỹc, respectively. In addition, κ ∈ [0, 1] is a reconstructed noise
level parameter.

Proof: Please refer to Appendix A.
Hence, the proposed threshold-enhanced hierarchical algo-

rithm can be described in the Algorithm 1. It is important to
note that the step size of preliminary candidate row support set
is 1, and one time least squares estimation is performed in each
iteration. The computational complexity varies with the scale
of the communication system. To overcome this challenge,
we next propose an adaptive threshold-enhanced-hierarchical
Algorithm.

B. Adaptive Threshold-Enhanced Hierarchical Algorithm

Let Υ = [1, 2, ...,KL] be the index set of matrix S, the
support set Ê which has been selected and the complement
ÊC which has not been selected. Suppose the correct support
set is E. By increasing the step size of preliminary candidate
row support set and the candidate set size in Algorithm 1, we
can find an approximate support set as quickly as possible.
Specifically, in Step 1, we can add more than one row at each
time to update the candidate row support set Ψ

(t)
row(X̂(t)), i.e.,

Algorithm 1 Proposed TEHE Algorithm
Input: Matrices Y and S.
Output: Estimated channel matrix X̂.
1: Row-Wise Estimation Layer:
2: Initialization: I = 1, t = 1, Ω

(t)
row(X̂(0)) = Ø, R(0) = Y.

3: Repeat
4: Λ

(t)
I = max{[cr]KLr=1, I}; (Preliminary Set)

5: Ψ
(t)
row(X̂(t)) = Ω

(t−1)
row (X̂(t−1)) ∪ Λ

(t)
I ; (Candidate Set)

6: ∆
(t)
I = max{[||S†

Ψ
(t)
row(X̂(t))r

Y||22]
|Ψ(t)

row(X̂(t))|
r=1 , I}; (Final

Test)
7: X̂

(t)
1st = S†

(∆
(t)
I )

Y; (Least Squares Estimation)

8: R
(∆

(t)
I )

= Y − S
∆

(t)
I

X̂
(t)
1st; (Residual Calculation)

9: if the halting condition is met then
10: break;
11: else
12: if ||R

(∆
(t)
I )
||2 ≥ ||R(t−1)||2 then

13: I = I + 1; (Set Size Increase)
14: else
15: Ω

(t)
row(X̂(t)) = ∆

(t)
I ; R(t) = R

(∆
(t)
I )

; t = t + 1;

(Update)
16: end if
17: end if
18: Element-Wise Estimation Layer:
19: Refine element according to (40) in Theorem 1
20: return result

let the step size s > 1, and s can be selected as large as
possible.

However, if the step size is increased there will be extra
non-zero rows in the selected support set when the first layer
stop, which satisfies Ê ⊇ E. Thus, it is necessary to remove
these extra rows. It can be known that the received signal of
the (t)-th iteration can be expressed as

(SHÊ SÊ)−1SHÊ Y

= (SHÊ SÊ)−1SHÊ SÊX(Ê) + (SHÊ SÊ)−1SHÊ SÊCX(ÊC)

+ (SHÊ SÊ)−1SHÊ W, (25)

where X(Ê) is a submatrix composed of the rows of X indexed
by Ê. Note that Ê ⊇ E if the iteration stops, then ÊC does not
belong to the real support set. As a result, X(ÊC) = 0, and the
received signal can be re-written as

Ỹ = X̃ + W̃, (26)

where Ỹ , S†
Ê
Y, X̃ , X(Ê),W̃ , S†

Ê
W, and S†

Ê
=

(SHÊ SÊ)−1SÊ. Then, we should find out the correct support
set E from the estimated support set Ê. In particular, the
regularization problem for estimating X in the row-wise
estimation layer which is to find the correct support set E
can be formulated as

X̂ = arg min
X∈C|Ê|×M

1

2
‖Ỹ −X‖2F + η‖XT ‖2,0, (27)

where η > 0 is a regular parameter, and ‖X‖2,0 =∑|Ê|
r=1 I‖xr‖2 is `2,0-norm encouraging the rows of matrix X
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to be zeros, where I‖xr‖2 = 1 for ‖xr‖2 6= 0, otherwise,
I‖xr‖2 = 0. Further, (27) is expressed as

{x̂r}|Ê|r=1 =arg min
{xr}|Ê|r=1

|Ê|∑
r=1

(
1

2
‖ỹr−xr‖22 + ηI‖xr‖2 6=0

)
. (28)

The closed-form solution to the problem (28) can be ob-
tained by the following corollary which is similar to the result
of Theorem 1.

Corollary 1. The element in the matrix X̃ is given by

x̂r,n =

{
0, if η0 ≥ |ỹr,n|2,

ỹr,n, if 0 < η0 < |ỹr,n|2,
(29)

where the threshold η0 is expressed as

η0 = ‖(SHE SE)−1SHE ‖22
Npσ

2

|E|
κ, (30)

where x̂r,n and ỹr,n represent the n-th element of x̂r and ỹr,
respectively. In addition, κ ∈ [0, 1] is a reconstructed noise
level parameter.

Proof: Please refer to Appendix B.

Remark 3. Although the forms of the solution of Theorem 1
and Corollary 1 are the same, they have different roles for
channel estimations. More precisely, the result of Theorem 1
is used to refine the elements in the non-zero rows, while the
result of Corollary 1 is employed to find both zero rows and
elements of non-zero rows in the matrix X̃.

The specific process is shown in Algorithm 2. With the
support of Corollary 1, the step size in Algorithm 1 can be
directly increased and speed up the algorithm without any
other operations.

IV. PERFORMANCE ANALYSIS

In this section, we provide theoretical guarantees that the
proposed algorithms can accurately estimate the rows of chan-
nel matrix in the first layer. In addition, the halting conditions
of the first layer of the proposed algorithms are analyzed and
discussed. Finally, the computation complexity is analyze to
evaluate the computational efficiency.

A. Accurate Recovery

Note that (7) can be reformulated as

Y = SX(k) + W, (31)

for the first layer estimation, where X(k) means that X has
k non-zero rows. To further prove sufficient conditions for
precise sparse recovery in (31), we introduce the following
definitions.

Definition 1. Restricted Isometry Property (RIP) [21], [22].
For the k-sparse signal vector x̃, the isometry constant δk of
a matrix S as the smallest number such that

(1− δk)||x̃||22 ≤ ||Sx̃||22 ≤ (1 + δk)||x̃||22 (32)

Algorithm 2 Proposed A-TEHE Algorithm
Input: Y, S, and s.
Output: Estimated channel matrix X̂.
1: Row-Wise Estimation Layer:
2: Initialization: I = s, t = 1, Ω

(t)
row(X̂(0)) = Ø, R(0) = Y.

3: Repeat
4: Λ

(t)
I = max{[cr]KLr=1, I}; (Preliminary Set)

5: Ψ
(t)
row(X̂(t)) = Ω

(t−1)
row (X̂(t−1)) ∪ Λ

(t)
I ; (Candidate Set)

6: ∆
(t)
I = max{[||S†

Ψ
(t)
row(X̂(t))r

Y||22]
|Ψ(t)

row(X̂(t))|
r=1 , I}; (Final

Test)
7: X̂

(t)
1st = S†

∆
(t)
I

Y; (Least Squares Estimation)

8: R
(∆

(t)
I )

= Y − S
∆

(t)
I

X̂1st; (Residual Calculation)
9: if halting condition is met then

10: break;
11: else
12: if ||R

(∆
(t)
I )
||2 ≥ ||R(t−1)||2 then

13: I = I + s; (Set Size Increase)
14: else
15: Ω

(t)
row(X̂(t)) = ∆

(t)
I ; R(t) = R

(∆
(t)
I )

; t = t + 1;

(Update)
16: end if
17: end if
18: Element-Wise Estimation Layer:
19: Refine element according to according to Corollary 1
20: return result

holds.

Definition 2. Exact Recovery Condition (ERC) [23]. Let SE
be the set of columns of S corresponding to the support set
E, define

ERC(E) = 1− max
s∈SEC

{||(SHE SE)−1SHE s||1}. (33)

Then, condition ERC(E) > 0 is called ERC.

Definition 3. Mutual Incoherence Property (MIP) [23]. The
mutual incoherence is defined by

µ = max
i 6=j
| < si, sj > |, (34)

where < si, sj > represents the inner product of column
vectors si and sj in matrix S.

To prove that the proposed algorithm can find the non-zero
row support set exactly, we need to use the following lemmas:

Lemma 1. [21] if the MIP µ < 1
2k−1 , then the ERC(E) ≥

1−(2k−1)µ
1−(k−1)µ > 0. where µ is the mutual incoherence of matrix
S.

Remark 4. Lemma 1 shown that if µ < 1
2k−1 in matrix S,

then S must satisfy ERC. In fact, the MIP condition is stricter
than RIP and ERC, i.e., MIP holds implies that RIP and ERC
hold but the converse is not true.

Lemma 2. Let λmin(·) and λmax(·) represent the minimum
and maximum singular values of a matrix, respectively, we
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have the following results [23]:

λmin(SHE SE) ≤ λmin(P) ≤ λmax(SHE SE) ≤ λmax(P), (35)

1− (k − 1)µ ≤ λmin(SHE SE) ≤ λmax(SHE SE)

≤ 1 + (k − 1)µ, if µ <
1

k − 1
, (36)

where P = SHE′
(t)

(I − SE(t)
S†E(t)

)SE′
(t)

, and E′(t) = E − E(t),

i.e., E′(t)
⋃
E(t) = E and E′(t)

⋂
E(t) = ∅.

From these we can derive a sufficient condition for exact
recovery, which is as shown in the following theorem,

Theorem 2. Suppose µ < 1
2k−1 , and all l2-norm of nonzero

rows ||ˆ̃x(i)||2 satisfy ||ˆ̃x(i)||2 ≥
2σ
√
NpM

1−(2k−1)µ , the proposed
Algorithm 1 can recover exactly the true support set E and
the vector ˆ̃x with a suitable halting condition.

Proof: Please refer to Appendix C.
Theorem 2 states that the Row-Wise Estimation Layer in

Algorithm 1 can accurately estimate all correct support sets as
long as two conditions are satisfied. The sufficient condition
µ < 1

2k−1 is a constraint on pilot matrix S. It requires S
to satisfy the general compressed sensing accurate recovery
condition, which can be guaranteed by the design of the

pilot. For another sufficient condition ‖ˆ̃x(i)‖2 ≥
2σ
√
NpM

1−(2k−1)µ ,
it shows that due to the influence of noise, the power any of
the remaining rows in X need to be large enough, the Row-
Wise Estimation Layer can select correct support set at this
step.

B. Halting Condition

It can be seen from the above analysis that Algorithm 1
can gradually find all correct non-zero rows. In order for the
algorithm to stop in time when all non-zero rows are found
instead of continuing, we set a suitable stopping condition by
following theorem:

Theorem 3. The halting condition for the proposed TEHE
and A-TEHE is that the power of residual ‖R‖2F ≤ NpMσ2.

Proof: Please refer to Appendix D.

C. Complexity Analysis

In the following, we analyze the complexity of the proposed
algorithm by flops (i.e., the total numbers of addition, subtrac-
tion, multiplication, and division). Compared to calculating
the 2-norm and sorting, the main computational effort of
the algorithm is spent on matrix pseudo-inverse and matrix
multiplication. Consequently, only the complexity of matrix
operations is considered below.

We analyze the complexity of each main operation first. The
operation which calculates the correlation coefficient between
each column of S and the residual matrix R(t−1) costs
O((KL)NpM) flops at the (t− 1)-th update. Then validation
of candidate support sets and least squares operations cost

O(|E|2Np+ |E|NpM) flops. For the Proposed-TEHE, it needs
to go through |E| cycles, the complexity of the Proposed-
TEHE is O(|E|(KL)NpM) + O(|E|3Np) + O(|E|2NpM).
Generally, KL > Np > |E|, the complexity of the Proposed-
TEHE is O(|E|(KL)NpM). For the Proposed-ATEHE, it goes
through fewer cycles than the Proposed-TEHE if the step size
is set as s > 1, and its complexity is O( |E|s (KL)NpM).
If the conventional SAMP i.e., the Parallel-SAMP [31] al-
gorithm is used to estimate the channel, where each antenna
uses the SAMP to process the received signal independently.
The complexity of one cycle is O((KL)Np + |E|2Np +
|E|NpM). Therefore, the total complexity of this algorithm
is O(E(KL)NpM + |E|3NpM + |E|2NpM2). In addition,
we compared two other algorithms, the two-stage alternating
direction method of multipliers (Two-Stage-ADMM) [32] and
multiple measurement vectors-approximate message passing
(MMV-AMP) [33], [34]. The complexity of these algorithms
is shown as follows. The complexity of the Two-Stage-ADMM
is O(T1((KL)2(Np + M) + M(KL)Np) + T2(|E|2(Np +
M) + |E|MNp)), while the complexity of MMV-AMP is
O(TNp(KL)M), where T1, T2, T are the number of itera-
tions. The complexity of each algorithm is detailed in Table
I. It can be observed that the complexity of our proposed
algorithm is lower than other algorithms.

V. SIMULATION RESULTS

In this section, simulations are carried out to evaluate the
performance of the proposed algorithms for uplink spatial
non-stationary channel estimation of massive MIMO systems.
In order to provide a baseline for comparison, we consid-
er the Oracle-LS by assuming the true support set of the
channel matrix known at the BS. Moreover, the performance
of Parallel-SAMP [31], Tow-Stage ADMM [32], and MMV-
AMP [33], [34] for channel estimation is also compared. The
common parameters are set as: the number of the user K = 8,
the equivalent channel length L = 64, the length of pilot
Np = 256, and the number of the receiving antenna M = 128.

A. Performance Comparison of Different Algorithms

Firstly, we evaluate the NMSE of the channel estimation,
which is calculated as

NMSE = E

[
‖X̂−X‖2F
‖X‖2F

]
, (37)

where X̂ is the estimated channel.
In Fig. 2, the NMSE performance of the Parallel-SAMP,

the proposed TEHE, the proposed A-TEHE, and the Oracle-
LS for the uplink spatial non-stationary channel are compared.
It can be observed that the NMSE performance of the pro-
posed TEHE is slightly lower than that of Parallel-SAMP for
SNR≤15dB. This can be explained as the noise level is high
and the channel information does not satisfy the sufficient
condition in Theorem 2. As a result, the proposed TEHE
fails to find all correct non-zero rows; while the A-TEHE
outperforms the Parallel-SAMP for the reason that increasing
an appropriate step size will find a redundant support set
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TABLE I
THE COMPLEXITY OF ALGORITHMS

Algorithm Complexity
Proposed-TEHE O(|E|(KL)NpM)

Proposed-ATEHE O(
|E|
s
(KL)NpM)

Parallel-SAMP O(|E|(KL)NpM + |E|3NpM + |E|2NpM2)
Two-Stage-ADMM O(T1((KL)2(Np +M) +M(KL)Np) + T2(|E|2(Np +M) + |E|MNp))

MMV-AMP O(TNp(KL)M)
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Fig. 2. NMSE performance comparison of different non-stationary channel
estimation algorithms.
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Fig. 3. Success rate for recovery with different channel estimation algorithms.

thus compensating for the disadvantages of TEHE. For SNR
≥ 20dB, the performance of TEHE and A-TEHE is better
than Parallel-SAMP and very close to that of Oracle-LS.
Our proposed algorithm underperforms MMV-AMP at low
SNRs (SNR < 15dB). However, to guarantee performance,
the MMV-AMP need to utilize the prior information of the
channel. As the SNR increases, MMV-AMP begins to under-
perform the other algorithms and the NMSE performance of
our proposed algorithm begins to emerge. When SNR > 15,
our algorithm consistently outperforms MMV-AMP and Two-
Stage ADMM.

In addition, the success rate for recovery is regarded as
another performance evaluation metric of channel estimation,
which is calculated as

∑KL
i=1

∑M
j=1(x̂i,j�xi,j)

KL∗M . It indicates the
proportion of zero and non-zero locations correctly estimated
by the recovery algorithm. Fig. 3 demonstrates the success
rates for recovery with different algorithms. It is obvious
that the success rate for recovery increases as the SNR is
larger. Especially, the success rate for recovery is close to
100% after SNR = 30dB. Besides, the successful recovery
rates of the two proposed algorithms are consistently higher
than that of Parallel-SAMP. This shows the advantages of
the proposed algorithm in finding the correct support set.
Therefore, using the non-uniform sparse feature of spatial
non-stationary channel matrix, not only the complexity of
the channel estimation algorithm can be reduced but also the
accuracy can be improved.

B. Performance Comparison of Different Methods in The
Second Layer.

Fig. 4 (a) compares the NMSE performance for different
algorithms with different processing methods in the second
layer. Especially, the block-SAMP here only has one layer
for channel estimation. It can be clearly seen that the NMSE
performance is improved by using threshold processing in the
second layer. In fact, the block-SAMP is suitable for spatial
stationary channels for the reason that it can estimate the non-
zero rows correctly and all the elements in non-zero rows
are non-zero. However, in the spatial non-stationary channel,
there are zero entities in the non-zero rows. Therefore, the
performance of spatial stationary channel estimation algorithm
decreases for the case that the non-zero rows are sparse. If the
second layer is added using a threshold approach, the noise
in the first layer is eliminated, i.e., the zero elements in the
non-zero rows are found. Meanwhile, Fig. 4 (b) reveals the
robustness of the proposed algorithm to the in-row sparsity,
i.e., the proposed algorithm has stable NMSE performance
regardless of whether the non-zero rows are sparse or dense.
From Fig. 4 (b), it is clear that as the in-row sparsity increases,
the NMSE performance of Proposed TEHE and Proposed A-
TEHE remains almost constant and close to which in Oracle-
LS even for approaching a spatial stationary channel. In con-
trast, the Block-SAMP shows a different NMSE performance
due to the in-row sparsity.

To further evaluate the performance between the two layers
of processing, we define the success recovery rate of the posi-
tion of non-zero and zero elements to evaluate the performance
of the algorithms. First, the sets of the position of non-zero
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Fig. 4. NMSE performance comparison of different method in the second layer.
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Fig. 5. The success rate for recovery of non-zero and zero elements in the second layer.

and zero elements in matrix X can be written as

Xnz = {(i, j)|xi,j 6= 0},Xz = {(i, j)|xi,j = 0}. (38)

Then, the success rate for recovery of the position of non-zero
and zero elements can be expressed as |X̂(Xnz)|nz

|X|nz
and |X̂(Xz)|z

|X|z ,
respectively, where X̂(Xnz) denotes the elements in the matrix
X̂ corresponding to the position in Xnz , | · |nz and | · |z
denotes the number of non-zero elements and zero elements
in the data, respectively. Fig. 5 (a) shows the success recovery
rate of non-zero elements. It can be observed that the non-zero
success recovery rate increases with increasing SNR and the
block-SANP algorithm arrives at 100% with SNR ≥ 20dB.
This verifies the result in Theorem 2, which states that the first
layer algorithm can estimate all correct non-zero rows when
the signal is strong enough. In addition, it shows that the non-
zero success recovery rate of proposed TEHE and A-TEHE
using threshold processing in the second layer is lower than
that of block-SAMP. The gap between block-SAMP and the

proposed algorithm becomes smaller at high SNR. From Fig.
5 (b), one can observe that the zero element success recovery
rate of block-SAMP cannot increase with the SNR raising,
and which can be almost 100% in the proposed TEHE and
A-TEHE. This can be explained as that the TEHE and A-
TEHE can correctly estimate the positions of zero elements
and block-SAMP can not remove the noise in the position of
zero elements. Therefore, the NMSE performance of TEHE
and A-TEHE outperforms that of block-SAMP.

C. Impact of the Row Sparsity

In Fig. 6, the effect of the row sparsity of the channel matrix
X and step size is presented. Due to the exact recovery condi-
tion, two cases of SNR=15dB and SNR=30dB are discussed. It
can be seen that the estimation at SNR=15dB setting step size
as one is poor. The reason is that the matrix does not satisfy

the exact recovery condition ‖ˆ̃x(i)‖2 ≤
2σ
√
NpM

1−(2k−1)µ at SNR=15.
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Fig. 7. The relationship among step size, running time and NMSE.

Therefore, the correct non-zero rows cannot be found com-
pletely, which inevitably leads to unsatisfactory NMSE results.
On the contrary, increasing the step size compared to 1 results
in extra rows, which compensate for the above disadvantages
with a high probability; while SNR=30dB is completely dif-
ferent. Because matrix satisfies the exact recovery condition
at SNR=30dB. Except for this one difference, the trends in
Fig. 6 (a) and Fig. 6 (b) basically coincide. To be specific, we
can divide both graphs Fig. 6 (a) and Fig. 6 (b) into two parts
according to the relationship between step size and sparsity to
observe. In the case where the step size is less than the row
sparsity, i.e, s < ‖X‖2,0, at the same sparsity, the larger the
step size the worse the NMSE performance, but the difference
in NMSE performance between smaller step sizes is negligible.
And at the same step length, the greater the row sparsity the
worse the NMSE performance. Similarly, in the case where the
step size is greater than the row sparsity, i.e, s > ‖X‖2,0, the
smaller the difference between step size and the row sparsity,
the better the NMSE performance. Furthermore, from Fig. 6,
we can find that except for some step sizes in the middle of

the figure which are smaller but close to the row sparsity and
much larger than the row sparsity, the difference in NMSE
performance at other steps is very slight. Fig. 6 illustrates that
in the general case we have a relatively large choice of step
size.

D. Computational Efficiency

Fig. 7 illustrates the relationship among NMSE perfor-
mance, running time and step size in the proposed A-TEHE.
It is worth noting that the proposed A-TEHE degenerates to
the proposed TEHE for the case that the step size is 1. It can
be clearly seen from Fig. 7 that the runtime decreases with
increasing step size. The step size is inversely proportional
to the running time. Moreover, as shown in Fig. 7, the
NMSE performance of A-TEHE with s = 1 is the worst at
SNR=15dB, but it is improved at SNR=30dB. This can be
explained by the fact that the channel matrix X can not satisfy
the exact recovery condition for SNR ≤15dB. As a result,
properly increasing the step size not only improves the speed
of the algorithm but also improves the NMSE performance
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Fig. 8. The influence of reconstructed noise level parameter κ.

for low SNR. Naturally, the value of the channel matrix X
satisfies the exact recovery condition at SNR=30dB, i.e., the
power of the noise is low enough, at the NMSE performance
of A-TEHE with s = 1 is the same as the case that the step
size is increased appropriately. On the other hand, in Fig. 7,
we also can find that NMSE performance weakens slightly
with further increases in step size. The increase in step length
leads to an increase in the redundant support set, and although
the second layer of processing of the algorithm can eliminate
some of the effects, the NMSE performance still consists of a
small difference.

E. Impact of Reconstructed Noise Level κ

Fig. 8 reveals the effect of the selection of reconstructed
noise level parameter κ in (24) on the NMSE performance
of the proposed algorithms. The boundaries of the different
colored areas in Fig. 8 (a) represent the NMSE performance
of different parameters κ at each SNR, and it can be seen
that these intersections are not straight lines, i.e., different
selected κ values will bring differences to the NMSE per-
formance. From Fig. 8, on the one hand, the selection of
different parameters κ at different SNRs will have different
effects on the NMSE performance. On the other hand, because
κ ∈ [0, 1], which indirectly affects the NMSE by influencing
the threshold ζ0 in Theorem 1 and η0 in Corollary 1, it can only
cause small-scale performance fluctuations of NMSE. This can
be clearly seen in Fig. 8 (b), where different κ at the same SNR
results in a slight change in NMSE performance. Furthermore,
from Fig. 8, we can confirm our previous judgment on κ, that
the choice of κ is related to the SNR. The labeled points
in Fig. 8 represent the values of κ that result in optimal
NMSE performance at this SNR. It can be found that as the
SNR increases, the optimal value of κ also increases. For
SNR=30dB, the optimal value of κ is close to 1, and the
NMSE corresponding to κ values larger than it is almost equal.

VI. CONCLUSIONS

In this paper, we investigated the spatial non-stationary
channel estimation for the massive MIMO systems. By exploit-
ing the special non-uniform sparse structure, the channel esti-
mation is formulated as a hierarchical sparse signal recovery
problem, and the threshold-enhanced hierarchical algorithms
including the TEHE and the A-TEHE have been proposed to
achieve high-resolution channels and support set estimations.
Furthermore, we provided the performance analysis for the
proposed channel estimation algorithms. In particular, the
accurate estimation condition and the halting condition for
the first layer estimation are derived. Simulation results show
that the proposed algorithms can significantly improve the
estimation performance in terms of NMSE, success rate for
recovery, and computation efficiency.

APPENDIX A
THE PROOF OF THEOREM 1

The problem (22) can be translated into |E|M independent
problems, which can be expressed as

x̂E,cn = arg min
xE,cn∈C

1

2
|ỹcn − xE,cn|2 + ζI|xE,cn|, (39)

where I|xE,cn| = 1 for xE,cn 6= 0, otherwise, I|xE,cn| = 0. It
is important to point out that 1

2 |ỹcn − xE,cn|
2 and ζI|xcn| are

non-negative functions, i.e., 1
2 |ỹcn−xE,cn|

2 ≥ 0 and ζI|xcn| ≥
0. Since ỹcn 6= 0, we can not find a optimal solution x̂E,n
such that 1

2 |ỹcn − xE,n|
2 = 0 and ζI|xE,cn| = 0 at the same

time. Therefore, the minimum value of objective function is
obtained from one of 1

2 |ỹcn − xE,cn|
2 and ζI|xE,cn|. Note that

the maximum value of 1
2 |ỹcn−xE,cn|

2 is |ỹcn|2 when xE,cn =
0, and the maximum value of ζI|xE,cn| is ζ when xE,cn 6=
0. The optimal solution of problem (39) can be obtained by
considering the following two cases:
• If ζ ≥ |ỹcn|2, it is worth to set xE,cn = 0, and the

objective value is |ỹcn|22.
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• Otherwise, i.e., 0 < ζ < |ỹcn|2, xE,cn = ỹcn, and the
objective value is ζ.

Summarily, a closed-form solution of problem (39) is given
by the following hard shrinkage operator

x̂E,cn = shrink(ỹcn, ζ) ,

{
0, if ζ ≥ |ỹcn|2,

ỹcn, if 0 < ζ < |ỹcn|2.
(40)

Recall that the received signal in (20) is only impacted by
the Gaussian noise, and the difference between the real channel
and the estimated channel can be expressed as

ỹcn − xE,cn = w̃cn. (41)

It means that the estimated signal of the first layer differs
from the original signal only by the noise. In other words, the
energy of the reconstructed noise and the received signal can
be used to design the threshold ζ. Especially, if the energy
of the received signal is greater than the upper bound of the
energy of the reconstructed noise, i.e., |ỹcn|2 > sup(|w̃cn|2),
we can make sure xn 6= 0. On the other hand, it can be judged
that xn = 0 if the power of the received signal is less than
the upper bound of the power of the reconstructed noise, i.e.,
|ỹcn|2 ≤ sup(|w̃cn|2). Therefore, the mean of the upper bound
of reconstructed Gaussian noise energy can be used to design
the threshold ζ. Note that the energy of reconstructed Gaussian
noise is

||W̃||2F = ||(SHE SE)−1SHE W||2F

=

M∑
i=1

||(SHE SE)−1SHE wi||22

≤
M∑
i=1

||(SHE SE)−1SHE ||22||wi||22

= ||(SHE SE)−1SHE ||22||W||2F , (42)

where wi is the i-th column of W. Then, the average of the
upper bound in (42) is given by

ζ̄ = ‖(SHE SE)−1SHE ‖2F
‖W‖2F
|E|M

= ‖(SHE SE)−1SHE ‖22
Npσ

2

|E|
. (43)

The above parameter ζ̄ is derived on the premise that the
signal energy is much larger than the reconstructed noise
energy. It is worth noting that when the reconstructed noise
energy is similar to the signal, this parameter ζ̄ (average
reconstruction noise upper bound) is slightly larger, that is,
the signal may also be smaller than this parameter and be
judged to be zero. To reveal the impact of the reconstructed
noise energy, we design the threshold as the following based
on the reconstructed noise level

ζ0 = ‖(SHE SE)−1SHE ‖22
Npσ

2

|E|
κ. (44)

where κ ∈ [0, 1] is a reconstructed noise level parameter.

APPENDIX B
THE PROOF OF COROLLARY 1

Since problem (28) is column-wise decomposable, we can
basically solve

x̂r = arg min
xr

1

2
‖ỹr − xr‖22 + ηI‖xr‖2 . (45)

Further, we can analyze each element, and (45) can be
transformed into

{x̂r,i}Mi=1 = arg min
{xr,i}Mi=1

M∑
i=1

1

2
‖ỹr,i − xr,i‖22 + ηI|xr,i|, (46)

where xr,i, x̂r,i, ỹr,i are the i-th element in xr, respectively. It
is clear that the basic problem after decomposition of (45) is
similar to (39). It is easy to obtain the result (40), which is
similar to the result of Theorem 1.

Remark 5. The element-wise estimation layer of the proposed
algorithm is used to estimate the non-zero elements from the
non-zero rows by solving a constrained l0,1-norm optimization
problem. Furthermore, we derive its closed-form solution to
obtain the results of Theorem 1 and Corollary 1.

APPENDIX C
THE PROOF OF THEOREM 2

Suppose the algorithm selects the correct support set at the
(t − 1)-th update and the set which has been selected at the
current step is E(t−1) ⊆ E. The residual at the (t−1)-th update
can be written as

R(t−1) = Y − SE(t−1)
S†E(t−1)

Y

= (I− SE(t−1)
S†E(t−1)

)SX + (I− SE(t−1)
S†E(t−1)

)W

, H(t−1) + N(t−1), (47)

where (I − SE(t−1)
S†E(t−1)

)SX , H(t−1) is the residual of

the CSI and (I− SE(t−1)
S†E(t−1)

)W , N(t−1) is the residual
of the noise. Compared to the previous work [21], [23], the
proof of the matrix form leads to the problem of calculating
the matrix norm. It is difficult to compare the values of the
matrix norm with the boundary conditions. By performing
several suitable scaling transformations, we can obtain the
exact recovery conditions of the sparse matrix. In the next
update, i.e., the (t)-th update, (10) can be written as

c(t)r = ‖sHr (H(t−1) + N(t−1))‖1. (48)

Therefore, the following correlation coefficient are available
when selecting a support set

c
(t)
r,1 = max

s∈SE
{‖sHr H(t−1)‖1}

c
(t)
r,2 = max

s∈SEC
{‖sHr H(t−1)‖1}

c
(t)
r,3 = max

s∈S
{‖sHr N(t−1)‖1}.

(49)

To ensure that Algorithm 1 can select the correct row support
set, the sufficient condition can be given by

max
s∈SE
{‖sHr R(t−1)‖1} > max

s∈SEC
{‖sHr R(t−1)‖1}. (50)
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Based on (47) and (49), we have

max
s∈SE
{‖sHr R(t−1)‖1} ≥ c(t)r,1 − c

(t)
r,3, (51)

max
s∈SEC

{‖sHr R(t−1)‖1} ≤ c(t)r,2 + c
(t)
r,3. (52)

Then, the sufficient condition in (50) can be expressed as

c
(t)
r,1 − c

(t)
r,2 > 2c

(t)
r,3. (53)

From the Cauchy inequality, we get

c
(t)
r,3 = max

sr∈S
{‖sHr N(t)‖1}

= max
sr∈S

M∑
i=1

{sHr n
(t)
i }

≤ max
sr∈S

M∑
i=1

{‖sHr ‖2‖n
(t)
i ‖2}

= max
sr∈S
{‖sHr ‖2‖N(t)‖F }

≤ ‖sHr ‖2‖I− SE(t)
S†E(t)

‖2‖W‖F
(a)
=
√
NpMσ2, (54)

where n
(t)
i is the i-th column of N(t) and (a) is obtained by

the fact that sr is normalized. In addition, I − SE(t)
S†E(t)

is

idempotent matrix, i.e., (I − SE(t)
S†E(t)

)2 = I − SE(t)
S†E(t)

,
thence the eigenvalues of this matrix can only be 0 or 1.
Obviously, I − SE(t)

S†E(t)
6= 0, then ‖I − SE(t)

S†E(t)
‖2 = 1.

Therefore, the sufficient condition in (50) can be further
written as

c
(t)
r,1 − c

(t)
r,2 > 2σ

√
NpM. (55)

To specify the relationship between c
(t)
r,1 and c

(t)
r,2, we can

consider the noiseless situation i.e., the noise matrix W = 0
and c(t)r,3 = 0, define

ρ =
c
(t)
r,2

c
(t)
r,1

=
maxs∈SEC

{‖sHr H(t−1)‖1}
maxs∈SE{‖sHr H(t−1)‖1}

. (56)

We can calculate that

ρ =
maxsr∈SEC

{‖(sHr (S†E)HSHE H(t−1))H‖1}
maxs∈SE{‖(sHr H(t−1))H‖1}

≤
maxsr∈SEC

{‖(S†E)sr‖1}maxsr∈SE{‖(H(t−1))Hsr‖1}
maxs∈SE{‖(H(t−1))Hsr‖1}

≤ max
sr∈SEC

{‖(S†E)sr‖1} = 1− ERC(E). (57)

Based (56) and (57), we have c
(t)
r,1 − c

(t)
r,2 ≥ ERC(E)c

(t)
r,1.

According to Lemma 1, we further have

c
(t)
r,1 − c

(t)
r,2 ≥

1− (2k − 1)µ

1− (k − 1)µ
c
(t)
r,1, (58)

i.e.,

c
(t)
r,2 ≤

(
1− 1− (2k − 1)µ

1− (k − 1)µ

)
c
(t)
r,1. (59)

Substitute (59) into (55), the sufficient condition can be given
by

c
(t)
r,1 >

2− 2(k − 1)µ

1− (2k − 1)µ
σ
√
NpM. (60)

Note that

c
(t)
r,1 = max

s∈SE
{‖sHr H(t−1)‖1} ≥ max

s∈SE
{‖sHr H(t−1)‖2}

= max
sr∈SE

{‖sHr (I− SE(t−1)
S†E(t−1)

)SEX(E)‖2}

= max
sr∈SE

{‖sHr (I− SE(t−1)
S†E(t−1)

)(SE(t−1)
XE(t)

+ SE′
(t−1)

XE
′
(t−1))‖2}

= max
sr∈SE′

(t−1)

{‖sHr (I− SE(t−1)
S†E(t−1)

)SE′
(t−1)

XE
′
(t−1)‖2}

, max
sr∈SE′

(t−1)

{‖pXE
′
(t−1)‖2}, (61)

where p = sHr (I − SE(t−1)
S†E(t−1)

)SE′
(t−1)

, E′(t−1) = E −

E(t−1), and X(E
′
(t)) is the rows corresponding E′(t−1) in matrix

X.
Let P = SHE′

(t)

(I− SE(t)
S†E(t)

)SE, then we have

c
(t)
r,1 ≥

‖PX(E
′
(t−1))‖F√

k − |E(t−1)|

≥ λmin(P)‖X(E
′
(t−1))‖F√

k − |E(t−1)|
(a)

≥ λmin(SHE SE)‖X(E
′
(t−1))‖F√

k − |E(t−1)|
(b)

≥ (1− (k − 1)µ)‖X(E
′
(t−1))‖F√

k − |E(t−1)|
, (62)

where (a) and (b) are obtained from (35) and (56), respectively.
According to (60) and (62), the sufficient condition can be
expressed as

‖X(E
′
(t))‖F >

2
√
k − |E(t−1)|σ

√
NpM

1− (2k − 1)µ
. (63)

Therefore, we can obtain a sufficient condition related to the
noise power, the mutual incoherence µ and the sparsity k as
following

‖ˆ̃x
(i)
‖2 >

2σ
√
NpM

1− (2k − 1)µ
, (64)

where ˆ̃x(i) is the i-th non-zero row in the matrix X.

APPENDIX D
THE PROOF OF THEOREM 3

For our algorithm, we have to study the halting condition.
In the previous work [26], [30], the halting condition is mostly
empirical, while we analyze and calculate it quantitatively to
obtain a solution. Note that the residual between the received
signal and the projection of the reconstructed signal on the
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matrix SÊ, i.e. R = Y − SÊỸ in the proposed algorithm
can be used for the measure of the accuracy of row support
estimation. If the support set is found exactly, i.e., SÊ = SE,
it is clear that

R = (I− SES†E)Y

= (I− SES†E)(SEX(E) + W)

= (I− SES†E)W. (65)

It is easy to obtain that the upper bound of the power of the
residuals in the this is

‖R‖2F ≤ ‖I− SES†E‖
2
2‖W‖2F ≤ NpMσ2. (66)

For the case that the support set is not completely found, i.e.,
in the (t)-th update, only part of the correct support sets were
found and let E(t) denote the above set. In this situation, the
power residual can be written as

‖R‖2F = ‖(I− SE(t)
S†E(t)

)(SEX(E) + W)‖2F

≥ ‖(I− SE(t)
S†E(t)

)SE′
(t)

X(E
′
(t))‖2F

− ‖(I− SE(t)
S†E(t)

)W‖2F

≥ ‖(I− SE(t)
S†E(t)

)SE′
(t)

X(E
′
(t))‖2F −NpMσ2. (67)

It follows from (35) and (56) that

‖(I− SE(t)
S†E(t)

)SE′
(t)

X(E
′
(t))‖2F

≥ λmin(SHE SE)‖X(E
′
(t))‖2F

≥ (1− (|ˆ̃x(t)|0 − 1)µ)
2σ2NpM

1− (2|ˆ̃x(t)|0 − 1)µ

> 2σ2NpM. (68)

From (67) and (68), we can learn that

‖R‖2F ≥ ‖(I− SE(t)
S†E(t)

)SE′
(t)

X(E
′
(t))‖2F −NpMσ2

> σ2NpM. (69)

The obtained results in (66) and (69) illustrate that ‖R‖2F ≤
NpMσ2 can be used as a halting condition.
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